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ABSTRACT

This volume describes ihe inarlvtical methods that were generated or used os part of this

program. The main body of this volume is divided into three chapters, as follows:

"o Cosed Form Analy;is Methods

"o Finite Eiement Annlyses

"o Phot.'elastic Stress AnaI-sis

Emphasis wcs placed on the development of c!osed form analysis procedures for handed

joints in laminated composites. A comprehensive linear analysis method arid associated

computer program (BONJO I) has been developed. Numerical results obtained with this

program are cc -npared with finite element analyses, strain gage data, and photoelastic

results. A "Plastic Zone" approach was used to extend BONJO I to include joints with

ideally elastic-p!astic adhesive stress-strain behavior. The theoretical development of a

rigorous non-iinear analysis procedure for bonded joints. has beer presented. However,

this method was not carried beyond the expioratory stage.

Finite element analyses used to evalucre the step lap bon,.ed joints and bo'teci ioints are

presented and discussed. Photoelastic stress analysis procedures used in the program are

described in the final chapter together with the results obtained.
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I. INTRODUCTION

This program was undertaken to develop an understanding of the fatigue phenomena of

structural joints in advanced filamentary composite materials and to develop analytical

and testing methods to support proper fatigue design of advanced composite structural

joints. The program included the evaluation of both bonded and bolted joints. Primary

emphasis was placed on joints in boron-epoxy. However, a limited evaluaton of bonded

joints in graphite-epoxy and glass-epoxy was included. Although O.e sizes of the joints

for this investigation were small (one to ten inches in width) all configurations evaluated

are representative of typical structural joints currently utilized in advanced filarientary

composite structures.

The program consisted of three major areas of investigation:

o Analysis Methods

o Fabrication, Inspection, and Testing

o Fctigue Analysis and Failure Mode Studies

Analytical methods for determining joint stresses were divided into two major tasks:

(1) analysis of bonded joints and (2) analysis of bolted joints. Primary emphasis was

placed on the development of a closed form elastic analysis procedure for bonded joints.

This analysis was used to evaluate a number of joint variables. A "plastic zone" approach

was used to extend the closed form analysis procedure to include joints with inelastic

adhesive stress-strain behavior. The results of the elastic closed form solution were

verified with finite element analyses, photoelastic analysis and strain gage data. Finite

element analyses were used to evaluate the step lap bonded joints and bolted joints.

The experimental program consisted of fabrication, inspection and testing of a large

quantity of joint specimens. Fabrication and inspection methods were established which

resulted in specimens being fabricated to close tolerances and of uniformly high quality.

This provided specimens that would consistently develop stresses that were predicted by the



analytical methods. Developing testing techniques and actual specimen testing was a
major portion of the program. Establishing proper specimen support was essential to

obtaining repeatable joint strengths within a specimen configuration. Equally important

was determining the proper cyclic rate for the different stress ratios and specimen configu-

rations to preclude specimen heating and erratic fatigue lives.

Evaluation of the e<perimental results was divided into two sepc rate but related tasks.

These tasks were faiiare mode studies and fatigue analysis. The failure mode studies

mentioned were photomicrographic analyses of the failure surfaces. This failure mode

analysis does not replace but augments the gross failure modes gener-lly defined within the

experimental phases of a program. The photomicrographic analysis conducted within this

"I! program established failure modes related to specific joint designs, joint loading, and

fatigue history. The fatigue analysis established relationships between specimen configu-

rations, joint variables, material combinations, loading conditions and stress ratio effects

for constant amplitude loading. The relationship between constant amplitude fatigue and

spectrum fatigue (block and realistic) was also evaluated for specific joint configurations.

This report is divided into three separate volumes each containing the developments

accomplished within a major area of investigation. Each volume is a self-contained

document, complementing the other two volumes but not dependent upon them for

coherence or continuity. The titles of the three volumes are:

Volume I - Analysis Methods

Volume I! - Fabrication, Inspection and Test.ng

Volume III - Fatigue Analysis and Failure Mode Studies

Volume I is divided into three chapters, with primary emphasis being placed on the first

chapter. This chapter, entitled "Closed Form Analysis Methods," contains sections on

earlier methods and their short-comings; the development of the analysis procedure

BONJO I; the plastic zone extension of BONJO I; and a section on numerical results.

The second chapter is devoted to finite element analyses of the step lap bonded joints and

mechanical joint specimens while the third chapter deal? with photoelastic analysis

methods.
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II. GENERAL DISCUSSION

1.0 INTRODUCTORY REMARKS

The increasing utilization of advanced filamentary composites in the design of aiecraft and

space vehicles has necessitated the development of more sophisticated methods of pnalysis.

Prior to the introduction of these new materials, the use of adhesive bonding was limited

almost entirely to secondary structural applications. The design-of bonded joints was based

largely on experimental data. Theoretical methods such as those by Goland and

Reissner (1), Volkerson (2), and Szepe (3)-were used to obtain a mor'e detailed knowledge

of the distribution of adhesive shear and normal stresses in bonded lap joints an'd were

generally considered as adequate for that purpose.

The determination of stresses in bonded joints with laminated composite adherends,

however, is much more complex than in those with, isotropic adherends. This increased

complexity can be only partly.attributed to the fact that composites are anisotropic and

heterogeneous. A large part is caused by the necessity to account for the effects of inter-

laminar shear and normal stresses in the analysis of composite join~ts. Numerical results

that demonstrate the importance of the above effects are presented in t 5is report.

Another factor that may be important in the analysis of composite joints:is the presence of:

residual thermal stresses. These stresses are caused by bonding or curing at elevated

temperatures and subsequent cooling to operating temperatur'es. Although thermal stresses

are introduced in all multi-directional laminates, they become especially significant when

bonding highly dissimilar materials such as boron and aluminum or graphite and aluminum.

It is within the capability of most large finite element programs in existence today to

perform an analysis of virtually any degree of complexity; but such analyses are cumber-

some and costly. In addition, the preparation of input data and interpretation of results is

extremely time consuming. It is therefore preferable to use direct or closed form methods

wherever possible.

3
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Since the majority of specimens to be analyzed as part of this program were simple bonded

lap joints of uniform geometry, it was decided tb. develop a closed form procedure for

composite joints. Although it became necessary to develop a more comprehensive pro-

cedure than initially anticipated, for the reasons mentioned previously, the method turned
'out to be very efficient and offers tremendous cos. and time savings as compared to the

finite element method. Finite element analyses, however, were performed for some of the

step lap joint and mechanical joint specimens and for the verification of the closed form

procedure.

2.0 NOMENCLATURE

Symbols are defined in the text when they first appear. A list of the most important ones

is given below for convenience.

: " •A, B, D Laminate Stiffness Matrices

E Young's Modulus

., G Shear Modulus

L Overlap Length

Mx, My, Mxy Stress Couples

Nx, N y, Nxy Stress Resultants

V , V Transverse Shear Forces:1x y

hN Distance 'ronm Reference Surface to Free Surface of Laminate

t Thickness

u, v, w Displacements in x, y, and z directions

x, y, z Cartesian Coordinates

4



'I a. Thermal Expansion Coefficientsx Y

e E:' e in Plane Strains

£ , e In Plane Plastic Strains

e Normal Strain

£ Normal Plastic Strain
zp

e yz Transverse Shear Strains

a Adhesive Effec+ive Stress

a axy In Plane Stresses

zF Normal Stressz

:'xzt 'ayz Transverse Shear S:Tesses

V Poisson's Ratio

u; L, a Upper, Lower, Adhesive

Superscript Reference Surface, k th I.am;na, Temperature

5



i11. CLOSED FORM ANALYSIS..V-£1-HODS

1.0 GENERAL

For the purpose of this report, theoretical methods other than finite element or finite

difft-rence procedures will be defined cs c losed form methods of analysis. This will

include itpeative as welt as d:-.ect solutions based on the theory of elasticity. The assump-

tions of small deformations and uniform geometry are made throughout this section.

Additional assumptions will be discussed as they are applied. Closed form solutions are

developed for the two joint ccnf'gurations shown in Fgure 1. Because of assumed sym-

metry, only one half of the single lap joint and one quarter of the double lap joint need to

be considered as shown by the heavy dashed line. The length of the joint is defined in

Figure I as being in the plane of the paper and in the direction of ihe chosen x-cixis. The

width of the joint is the dimension perpendicular to the plane oF the paper (parallel to the

y-axis). The region 0 - x • L will be of primary interest and the governing differential

equations to be developed will apply to this region only.

2.0 PRELIMINARY INVESTIGATIONS

After a thorough evaluation oa available theoretical methods, it was decided early in the

program to develop a procedure for the analysis of simple laminated composite lap ioints

based on the Goland-Reissner (1) differential equation approach. This procedure required

the removal of the ;mposed symmetry restrictions in the Goland-Reissner analysis anc the

substitulion of gross laminate properties in place of the isotropic elastic moduli. The

Kirchhoffassurmptions, however, were assumed to remain valid in this initiai procedure.

For the cuse of single lap joints with relatively flexible bond layers and isotropic

"* adherends, Goland and Reissner obtained the folloxvinr uncoupled differential equations
•t0 0

for the shear stress, a 0 and the normal stress, CO, in the adhiesive:

6
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3oa
doa 8 G do'

xz a xz 0
3 Et t dx

dx a
(1)

4o 2
"d4° 24(1 -v)Ea

a 0+ O 0
dx4 Et3 t z

a

It might be remarked that there is an inconsistency in equations (i). The first equation is

based on plane stress considerations while the second one assumes a condition of plane

strain.

The above equations are uncoupled as a result of the requirements that the thickness and

material properties of the two adherends must be idei:tical. If these restrictions are

removed one may, by using essentially the same procedure, obtain the two coupled dif-

ferential equations:

d3o G/ G(E-t 2 1EL v2 6G I_2Iv
x( u 1 o a u L o

d3  Et Et dx (E 2 E 2  -z
0x a ua(E L t L

(2)4o /•(_ 2 -2o • ,- ,- oz
do4C 12E I -V 21-\ 6E i -v 2 V2duoz+ a u + ( L.... L xz =-0
dx -a (E ELtL) a (a Eut EL t L

These equations thus represent the governing differential equations for a single lap joint

with unequal isotropic adherends in a state of plane strain (in the x-z plane). Eu and EL

are the elastic moduli, v u and v L are the Poisson's ratios, and tu and tL are the thicknesses

of the upper and lower adherends, respectively. To obtain the relations for a plane stress

condition, the Poisson's ratios are dropped from the above equations.

The normal stress, 0"z, may be found from the first of equations (2) and then substituted

into the seccnd one to yield the following sixth order differential equation irt (doCx°/dx):

d6 d4 d2 3)do
d--+C d .- + C d +C x- = 0 (3)dx 6 1 dx 4 2)dx 2 3 d(
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where:

4G I -V2 Iv2~
- a--lu+ ' "..

3, \Et E.L t.

12r 2 1 -,J

IA 1-vI(5

a U+ L (4a)
2 t \t 3  E 3 )

36 E G 21-v '2
a o /'u L\

3T~ 1- E %)

The solution of the differential equation (3) is in the form:

6 x

xz 0 .

i11

where the X.'s are the roots of the equation:

6  I + C 2 2 ,C. (6)

The constants A. may be determined from the boundary conditions.

The analysis for a double lap joint configuration is similar to that of a single lap joint and

differs only in the coefficients of equation (3) and the boundary conditions. The coef-

ficients, C., for this case become:

4G il-v 2- I-2
C1 t fEt7 2-•Et

a uu L Li

12E
C2  ta -( 3) (4b)

3c c2 to 2 \E-t)

9



In the above tL represents the total thickness of the plates to be joined and t is the thick-L u

ness of each splice plate.

The differential equation (3) applies to joints with laminated composite adlieends; but the

coefficients C. will now involve the gross laminate stiffness properties. The stiffnesses

may be obtained from laminated plate theory* without difficulty. The constitutive equa-

tions for a thin laminated plate are generally written in the form:

[NJ =[A]{(e -r B](x)
(7)

fM) = [BI(e) - ([)t)

When the laminate is in a state of plane strain, one has, therefore:

N0N =A1 - Bx 1x -B 'x

(8)

x x x

where e 0 is the strain at the reference surface, which will for convenience be taken at the
x

interface of the laminate and the bond layer. The gross laminate stiffresses are given by:

NA C'(k) h
k=1

N

B, e I C''(k) (h 2-h2_Ii Ii k hk i
k=i (9)

N
1v '(k)0h3- h33

D =-->C, h h
II 3 I k k-I

k=i

D D - 1 1  /•

*Note that at this point the Kirchhoffassumptions are still assumed t-i be valid.

10



In the above expressions, the positive sign refers to the upper laminate and the negative
h kth

sign to the lower laminate; hk is the distance from the upper surface of the k layer

(lower surface for lower laminate) to the bond layer interface. For a single lap joint with

• • composite adherends, one now obtains:

C ('-t - - + __ D11a k A Ul A~lL

C E A

C2 - (4c)

E G -u L L 2
ta a D_1 ___D_

1 2 2(Au~; A ID)
while for a double lap joint one finds

_ a 2 + l

a 11AlDl

C 2-a(4d)

2

C:=C C + 2Auu
43 1 2 2 ub

When the laminates are in a state of plane stress (in x-z plane), i.e.

i, •(k) = (k) = (k) --0
y xy yz

'(k) (k)
the gross laminate stiffness properties are obtained by replacing C I() by I//I in equa-

tions (9). C and S are defined in reference 4 in terms of the elastic constants and

lamina orientations.



After the coefficients, Ci, are determined, the roots, Xi, can be calculated from equation

(6). Seven boundary conditions are now required to obtain a solution and define the state

of stress in the joint. None of the conditions that were used, however, pertained to the

adhesive shear stress and as a reult the peak shear stresses occurred at the ends of the

joint, as was the case in the Goland-Reissner analysis. This cannot be correct, of course,

and it will be shown later that in reality the peak stresses occur slightly inward from the

edges.

The fact that the location of the peak shear stresses in the adhesive could not be

accurately predicted was not considered a major argument against the use of the method

described here, but studies were made which indicated that the magnitude of these stresses

was considerably lower than calculated with this analysis. It was conjectured, and later

substantiated, that because of the relatively low transverse shear stiffness and normal

stiffness (through the thickness of the laminate) of most fibrous composites, adherence to

the Kirchhoff assumptions could lead to unacceptable errors.

The above method of analysis was therefore discontinued and a more rigorous procedure

developed in which the Kirchhoff assumptions were discarded. The theoretical development

of this procedure is presented in the following sections.

3.0 GENERAL EQUATIONS FOR LAMINATED COMPOSITE JOINTS

3.1 Lamina Relations

The laminate is assumed to consist of orthotropic layers which may have arbitrary thickness

and material properties. A Cartesian (x, y, z) coordinate system is used as the plate

reference system in which the z-axis is normal to the plane of the plate. A small splice

cut from the laminated plate is shown in Figure 2. The material symmetry axes (1, 2) of

each lamina lie in a plane parallel to the x-y plane but may be rotated about the z-axis

through an arbitrary angle e. The thermal expansion coefficients are also assumed to be

orthotropic and hence:
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S a.4 -a5 -.

The linear strain-displacement relations for the k lamina may be written:

•(k) = (k) ¢(k) V(k) + (k)

x x yz z y

(k) = (k) (k) (k) + (k) (10)
y xz z x

(k w(k) (k) (k) (k)
C -W, G U, V,

z z xy y x
where a comma fol owed by a symbol means differentiation with respect to that symbol.

w kth
The constitutive relations for the k lamina with respect to its own vincipal (1, 2, 3)

axes may be expressed in matrix form by

(lk) "C] (k) (:- o.Tj (k)
1,2,3 1,2,3 1(2,3

T is the temperature change from some initial reference state (bonding or curing tempera-

ture, for instance). The non-zero coefficients of the stiffness matrix [CI are given in

reference 4 in terms of the elastic constants of the material. The stress-strain equations
with respect to the laminate reference (x,y,z) axes are:

SW(k) (k)
xa ) 1 1  Q 12 Q13  0 0 Q16

. Q 0 0 26y , 2 23 Q26 y

,_ : (12)

Yz Q 44 Q45 0 yz

xz Q 55 xz

xy L Q 66 xy

"Since the [Q] matrix is symmetric, only the upper half of the matrix is shown. The actual

stress in the lamina is obtained from the relation

,k)(k) ;7) (k) - [ T W Q](k)f[)(k) - [T,(k) (13)x,y,z x,y,z x,y,z x,y,z x,y,z

where the equivalent thermal stresses aie defined Cs follows

14



T 2 2a = [(C OL + C +c)m +(CcL+ .i+ Ln)x 1 i c12 133 12°1 c22 233

T C 3•)2 23a3m]a += + C(C+C+ITl 111 C12c2 +2' IC3ýM+ 22c•2+Cf

T z = (C13c 1 + C 23f 2 + C333)T (14)

T To" =a =0
yz xz

To C = L C1 ,+ C1 (- -Cc+CCLmn
xy = 1 1 12(i.2 -LI 1 22L2 ((213 - C23) a3]mnT

and m = cos 0, n = sin e. The Q.. are given by:'1

4C 22C 4 22
Q mC +2mnC + n4C + 4m 66I11 11 12 2 2  66n

Q12 =mCl+(m +n)C 12 +mnC 2 2 -4mnC 6 6

Q 13 =m2C13 + n2C23

3mn -~ 2 _ 2 3 2 2
16 11 - n )C12 -mn3 2 2 -2mn(m - )C66

Q 22 = n4 C11 + 2m2 n2 C 12 +m4 C2 2 + 4m2n2 C6 6

Q2 3 nC 13 +mC 2 3

Q nC2_ 2 3 2_ 2Q26 mn3C 1 1 + mn(m -n )C12 - m nC2 2 +2mn(m -n2)c66

Q 3 3 =C 33

Q 3 6 Mn(C13 - C 23)

Q44 m2C44 + n2C55

15



Q45 -mnC44 + mnC 55

55 nC44 +mC 55

Q66= m2n2C11 - 2m22C12  Mn 2nC22 + (m2 - n2)2 C6 6

3.2 Effect of Transverse Shear

In lap joints made of conventional metallic .naterials the effect of transverse shear

deformation on the stress distributions in the joint is generally found to be negligible

and therefore an analysis based on the classical Kirchhoff assumptions is adequate in most

cases. However, in laminated plates having relatively low transverse shear moduli, these

assumptions are no longer permissible. The effect of transverse shear deformation on the

bending of symmetrically laminated plates has been investigated by Whitney (5). His

work has been extended for use in the present analysis.

The mid-surface of the adhesive layer has been taken as the reference surface for both

laminated plates. The adhesive shear stresses at the reference surface are denoted by

a 0and a and the transverse shear stresses in the kth layer are assumed in the form:xz yz

(k) 0 (1 z) [+kf)+b k, [Q(k)f(z) (k)5 +
(k =a + [ Q (kf(z) + b,,z + a55) +bx y~

(k)= a° (- )+ [QoI(4fz) + b4 5 z + a ]Zp + [Q(k)f(z) + b4z + a44}Cpyayz yz4 5 4 4 4 4

where cýpx and cpy are functions of x and y only; z is measured from the reference surface;

and hence will be negative for the lower laminate (see Figure 1). It must be noted that in

this case hN will also be a negative quantity. In an isotropic material the transverse

shear stresses vary parabolically through its thickness. Whitney's assumption of a para-

bolic variation of shear stress within each layer therefore seems reasonable. With this

assumpti,'i, f(z) is taken in the form:
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II

f(z) (zhN z) (16)
hN.

which is symmetric with respect to the middle surface of the lamindted plate and goes to
(k)zero at the outside surfaces. The constants a ... re determined from thesrequirement thatII• .

the shear stresses are continuous at the interfaces of adjacent layers, or

alk+).. = a.. + [Q~k) (k+1)ii f(hk) ii 4,5 k = 1,2, ... (N-1) (17)

It follows from equations (15) that:

A 0

and hence the remaining ak) can be calculated from equation (17). Since f(O) = 0,

one finds for the N lamina

N'!'"
k=1

The b.. follow from the condition that the shear stressbs are zero at the free surface

(z = hN) and therefore:

(N)

b.. q 0.JL (8ý
bIj. hN (

(N)For a laminate which is symmetrical with respect to its middle surface, a.. and therefore
•-_ II

b.. will be zero. - !2 , I

The transverse shear forces are obtained by integrating the shear stresses over the Ihickness

of the laminate

±V +Ao+Ax 2 xzN 5 x 45y
(19)

y = oyzhN + A4 5 cPx+ A4y

17



where:

N
bA-- I b h ~ ~ h 2 F(h))+a~( )

Aij 2 N' I iQj)[F(hk) k-1)3 +a!k,(ijk hk-i
k=1

i,j =4,5

and

F(z) =ff(z) dz = 2z (3zh - 2z 2)

hN N

In equations (19), the positive sign refers to the upper laminate or splice plate whiie the

negative sign refers to the lower laminate (negative z-axis). This convention will be

,cmaintained throughout the cnalysis. Solving for the shear functions cpx and cpy from

equations (19)'one obtains:

1 A° 5 + 4 5 Vy yz' C~ : 55 +V h z A5 "h

y 45 -55

where:

_--T44 Aý45 A A44 A 451

Substituting (20) into (:51 yields for the transverse shear siress-.; in the kth layer:

(k) (k o -,k) 5 Vx 1 V
"xz 1 xz 2 yz 3 x ii y

(1)0
,r (k):5() ,o + 5 k).: . ,.a (k) V ;k) ,,

yz 5 xz 6 yz 7 x 8 y

in which the G s are functions of z only. They are niven by:

-1 (z)k) a 1 ?-t (k-1

h N h 2hN 3(z)

18
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(k) I - (k)
Z2(z) 2 N Z[4(5

(k) (k) ON] (k) W3
UP ) A55[Q55 fz 55 Q 4 5f(z4 + 4 5 - k 045

(k A IQW - (k) (Qk)f (k),(k) = -z) + + + A [Q55 (z) + b 55z

i~k I h NO()k
5 2 N 58z

G6 (=)(k)= i f(hN +b z+

(k) (k) f(Z) + b (k) f(z) +(k)

'• 4 4G8 : Q f(z)+ +a3 ]+ Q f(z) + b4 za 4 5 j

=ýz 74[4 b44 z + a4j+ 74Q45O45

The transverse shear strains are obtained from equatic-ns (12):

e z(k) Q44Q4 W I (k) -154 5 (k)y (k)
:• yz =z

Stxz• .45 Q55- •xz _$45 '55. • xz (2

and by substitution of equations (21) one has:

E:: •(k) CS r (k) --- k) 4-S(k)---(k)• IC 0 r s(k)G---k) s(k) G (k)] o

From z eato" 55101 ""d Q•5•51 (22)+

xz 5 G1 5 G " 55G + '45 6 ]ayz

[ s(k)5(k) + s(k)(k)3 .. . k)C + ((k)2(k)IV±L55 3 ,45 7 Jx 55 LS•4 45 8 y (3

'• •(k) s(k)5(k) +,(k)- (k)• 0 + (k)ýz(k) + t(k-'-(k)• oi.yz =L45•1 •44L• Jxz L45 2 •44 6 jyz

ES(k)--(k) +s(k)--(k) ,V ±rE(k)5(k) + S(k) G(k) 3v
• k[45 3 +44G7 vx +.45 4 -44 8 "•y

The in-plane displacements may be obtained by integrati.ig the shear strains with respect

to z. From equations (10) and (23) one obtains, therefore:
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u(k) u- W (n+ G(kxk)) ao + G (k)V G (k) -
(k) x Ij w, rn G G 2  yz

(24)
z

V~)V d k o +~ G, (W ±Gk)V ~G(k)V
( 6' y+G6 ' 7 5 8 6

0

where:

G (Z) (k fE (f(n)(k) +S(k)- G (k) 1, 4 c(k)
5 1 45G1+4 ]

(25)

+(Z) (k) f slk-,k).nk) + S(k) (k) ]clh + (k)
j+4 f 45 • 44 j+41T j+4

0 j = 1,2,3,4

Continuity of displacements at the interfaces of adjacent layers requires that:

Gl(hk)(k) = CGi(hk)(0-) (26)

( 1) (1)
From equations (24) it can be seen that G.(O) , cnd therefore c. , is zero. The

(k)Iremaining constants of integration, c. , may now be calculated from equation (26).

The in-plane strains are obtained from equations (10) by differentiation of the displace-

ments (24). Hence

z
(k) = o - f , + G(kao +G G(k)o a(k)\ * G(V
x x f xx I xz,x 2 yx' 3 x,x 4 y,x

0

(27)
z(k _f d Glk)o +Glk)oo~ )~Vx G().(k) = eea w d1 + GWa + G Wy a G(k yGW

y y f yy 5 xzy 6 yzy 7 xy 8 yy
0

20



pm z

(k) -f -2 w,., dn + G( 5ox + GI~o + G~k
xy xy 5 xz,x 1 xz y 6 zx (27)

0 (cont'd)

W(k) o (Tk)V (k)x (k)V (k)i;•2°z~•G V -G )Vxy±G V ±G )V
4 -G Yz,y 7 x,x +3 x~y 8 yx 9Y 9 YY

The functions G.(z) thus represent the effect of shear deformation in the !aminate. If it
is assumed that the normal displacement, w, does not vary through the thi':kness of the

0 0 0
laminote, the integrals irn equations (27) cre replaced by zw, ; zw, ; ard 2zw ;
respectively. This assumption, however, is not necessary for the special cases considered

in this report.

3.3 Laminate Stress Resultants and Stress Couples

It will be convenient to eliminate the normal strain from the lamina stress-strain relations

and express the stresses in the plane of the kth lamina in terms of the in-plane strains and

the noimal stress, a(k). The normal strain follows from the third of equations (12):z

(k) =1 r-.(k) - Q(k)e(k) _ Q(k) (k) _ Q(k).(k)] (28)z =Q---33 z 13 x 23 y 36 xyJ

Q33

After substitution of the above in the first, second, and sixth of equations (12), the in-plane

stresses may be written in the form:

[T a:2:U22 i92j j +{Q23 Cz a(29)

xy ý 6Z26 igd y36J txy

where

C1~ 1(k) = ~ (k) j.j (k)
xy xy 3
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and Q = Q. i3Q3i- i= 1,2,6 j= 1,2,6'I I 'I 33

Q i3
Qi -- Q = 1,2,6 j= 3

The stress resultants and stress couples are obtained by integrating the stresses over the

thickness of each layer and summing the results for all layers, hence

Nx N j ax(k)

N j I h a dz (30)

Sxy xy

M N hk (k)

{M j= h 1 } zdz (31)

Mxy yk=l hk_

Equations (31) therefore represent the stress couples about the mid-surface of the adhesive

layer.

3.4 Equilibrium Equations

Consider a thin slice cut from a double lap joint as shown in detail A of Figure 1. The
surface GH for this case is not a free surface and therefore the normal stress will not be

zero but equal to ac. The shear stress along GH, however, is zero because of symmetry.
The forces and moments acting on the upper and lower laminate of such a slice are shown

in Figure 3. Equilibrium of horizontal forces in the x- and y-directions yields

0N +N -a =0
xu,x xyu,y xz

(32)
N N +00° =0

NxL,x + NxyL,y xz

and

22



dx

N +
V + Y

Vxu

N+

-7 - u

xu

N Y U Y U N y l+

0 y1

y 1

N

FIGURE 3 EQUILIBRIUM OF FORCES AND MOMENTS-DOUBLE LAP JOINT
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0N + N -" :0
xyufx yu, y yz

(33)

N xyL~x + NyL,y + a°yz 0

Summing vertical forces gives the relations between the transverse shear forces and the

normal stressss at the mie -surface of the adhesive
0

+V -a =0xu,x yu,y xz
(34)

+V +o -a =0
xL,x yL,y z z

Similarly equilibrium of moments in the x- and y-directions gives

M +M -V =0
xu,x xyu,y xu

(35)
XL,x MxyL,y - xL :

and

M + M -V =0
xyu, x yu, y yu

(36)
MxyLx + MyLy- V = 0

Equations (32) through (36) are applicable to both double lap and single lap joints, but for

the latter, 0c in the second of equations will be zero. The sum of the stress resultants in
z

the upper and lower laminate represent the total applied loading for the single lap joint

¾ and one half the applied loading for the double lap joint. All moments are again caicu-

lated with respect to the adhesive mid-surface. It must also be remembered that in a

double lap joint the lower laminate represents only one half of the laminated plate and

-i that the transverse shear forces and moments of the entire plate with respect to its middle

surface are zero.
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4.0 NARROW UNIAXIALLY LOADED JOINTS

4.1 General Remarks

Most of the joints tested as part of this contract were 1 .0 inch wide uniaxially loaded

specimens and therefore it appeared reasonable to assume the joints to be in a state of

plane stress. This means the stresses a y, axy , and ayz are assumed to be zero while the

remaining stresses are constant along the width of the plate,. i.e.

0 (k) =a(k) =(k) = 0

x.,y xzy z,y

The adhesive material will be assumed isotropic while the laminates are assumed to consist

of orthotropic layers (Section 3.1). Half of the adhesive layer, that above the reference

surface, will be considered as part of the upper laminate while the other half is taken as

part of the lower laminate. The stacking arrangement of the laminated plates need not be

symmetrica! about the middle surface. The joint is assumed to be clamped at a distance L

from the splice plate. This assumption does not affect the derivation of the governing
differential equations, of course, but will be used to establish the necessary boundary

conditions.

4.2 Single Lap Joints

4.2.1 Effect of Transverse Shear

Because of the plane stress assumptions most of the exp. essions in Section 3.2 are simpli-

fied considerably. For a laminate consisting of a single layer, equations (15) may be

written:

a :a 0 - z f(z)
° z - EQ5 5CP + Q45Py]f(z)

CFz Y a yz - Q5y
ayz ~ N +~ - ( 4 5 CPx + Q4 4 CPy] f(z) 3

and since for plane stress a = ao = 0, one obtains:
yz yz
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0
0 = (Y -.- )z+ _L cpf(z) (38)

N )N 55 x

Equation (38) may be generalized for a multi-layer laminate by writing it in the form:

k ) ° 1 - - + f(z) + bz + a(k) x (39)
xz xZ Lh N

Continuity of shear stress at the interfaces of adjacent layers gives:

a(k+1) = a (k)+[$ - ) f(hk) (40)

and as before

a0) = 0

Since the shear stress vanishes at z = hN, one finds:

b a-(N) (41)
h N

The transverse shear force, Vx, is obtained by integrating the shear stress over the thick-

ness of the laminate, or:
Ilo

+V a h +A (42)
x 2axz'4 A55 °x

where:

N1 2+\' 1 rFh 'h k

A5 5 = bhN 2+ [F(h F(hk)]+ (k) (hk - hk_)Sk=l I$S5-5

and F(z) is as defined in Section 3.2. Solving for c0x from equation (42) and substituting

into (39) yields:

a(k) - 7(k) o ,- 5k)Vx43
xz 1 Gxz x(43)

in which:
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zk -(k)
I(z)hN 2 N 2(z

(k)K (k

I5 L 55 i

From the second of equations (22), setting a(k) 0 and substituting for a'' from equationyz xz
(43), one has for the transverse shear strain:

(k) (k)Ek) ao -(k)Vx4
xz 55 1 xz 2 x

Substituting this into equation (10) and integrating with respect to z gives the displacement,

U

z• (k) 0 ka: ( k)x
() u_ wx d+ G C ± G V (45)

where

z

Gi(Z) (k) S( f j=1,2 (46);• : ~~~55 i i=•2(6

(1)It follows from (45) that the constant c. must be zero. Compatibility of displacement at

the interfaces requires:

G (h )(k)G (h k(k+1)k k k j=1,2 (47)

and hence the remaining constants can be determined. Differentiating the displacement

(45) with respect to x gives the longitudinal strain:

z
(k) 0(k) G(k)VSe Wf dnj+ Gkax ±G GkV (48)"()X X - XX I ZX 2 xx

x x
0

It must be noted that the shear funclions, and G do not have the same meaning

as in Section 3.2.
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4.2.2 Variation of Normal Displacement

The integral in equation (48) will not be determined consistent with the assumed transverse

shear deformation. The stress equilibrium equations for narrow uniaxially loaded plates

reduce to:

a(k) + C(k) =0
XX xzz

(49)

(k) +C(k) =0

Integrating the last one with respect to z and substituting for a(k), gives the normal stress

in the kth layer:

a(k) o + p(k)ao p(k)v (50)
z z 1 xz,x 2 x,x

where a is the adhesive normal stress at the reference surface and the normal stressz
functions ari given by:

W 2z 2 1k
Pl(z)(k) - - z • hN P2(z)(k)

P2(z)(k) +-I I F(z)+155 a(k)z +k)SA~~~55 2b2+p

Continuity of normal stress requires:

P2(hk)(k) = P 2(h k)(k+ ) (51)

It follows from equation (50) that p(1) k0. The remaining k)
2 0.Termiigp 2 cun be obtained from the

above. Since the stresses a and a are zerc, one may write for the normal strain in

the kth layer: y xy

e = ( ka(k) + s(k) (k) (52)
z /z 13 x 33 z

where:

LS] = [Q]
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Differentiating with respect to x and substituting the first of equations (49) gives:

(k) - S(k)-(k) + (k)_(k)'"xz S 13 axz, z ' 33 Vz'x (3

Substituting equations (43) and (50) one obtains after integrating:

W, =w, )o -i-p4 paw(k) o +pk)o +P ) PV - 6- (54)
x x 4x 3 5z x 6 x~xx 7 az,x

where:

p3(Z) (k)= s(k) z hN P(z) (k) + p(k)

13 hN 2N 5 3

z

p(Z)(k) = (k) P1(Tl) d-n'+ p(4k)

0

S (k)

P(Z)(k) 1 +P (k)p5()k A -1_ k f (z) 5 b
A55 S55

()= S.(k) p2•) drl+p (k)

P6(z)(k 033
0

P7 (z)(k) - (k) (k)
33 z 7

At the reference surface (z = 0), w(k) 0. and hence:tx =WxI

OP(1)=0 i=3,4,...7

The remaining constants p(k) are delermined from the condition that the slope must be equalI
for two adjacent laminae at their interface, or

p Pj(h k)(k) = p (h )(k+I) (55)

Differentiating equatinn (54) with respect to x and integrating with respect to z gives:
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Z
Ef 0 +(k) o + (k) k0 p(k) v (k (k) o,~wdr=z 1: 8Wx xz÷ 9 PX X 10x,x 1i x,xxx r12az,xx

W'x xr 8 •xz'x 9 •xz"xxx±P1V ' ±P 11VXXx 2zx

0

(56)

where
z k-1 hm

kj+5- Pjm)cfr j= 3,4,.. .7
hkl m=1 hm_1

4.2.3 Laminate Stress Resultants and Couples

(k) (k) (k)
Since c and a k) are assumed to be zero and only the longitudinal strain, e. is of

y x
interest here, one may solve for the in-plane strains from equations (29). This gives

1=1(k)(k)

I> y- (k) +yZ3 T3
where:

Q-1 2Q 16

Jul= if12 2 U 6[ Q16 U26 "661

(k) i ( (k) (k) (k)
x -- k) [x + z

311
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and after substituting (48), (50), and (56), this becomes:

Cr(k) 1 Co -zo -T(k) RW
Q xx xx I 1 2 xz,xxx

+R3k) OR•. R(k)a . Rv W R(k)v (, xx x x,x, 6 x,xxx (58)

where

R(Z)() £G (Z() - P(Z) (k) + Z~k) p ~((k)) ~k

-- 11

(Z)(5(k

4R 5(4z £ G 2(z ) -20( zz) (k)Z)((Cz ••(k)/

Qi

(k) p (k)( -(k

R 6 (z) 11 1

For the case under consideration the equilibrium equations (32) through (36) reduce to:

o N -a '0
xu,xl xz

N + Cx 0 (59)
xL,x xz

-c0  0v - aF = 0 1
xu~x z()

v + 0= 0 (6)
xL,x +z

and

M -V =0Xux xu

ML - VL (61)

Adding the first and second of equetions (59) and,(60", one has:
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N +N =0
xu,x xL,x (62)

••V + V =o
xu,x xL,x

and therefore:

N + N = Constant
xu xL

V + V =Cinstar'txu xL

The first constant is, of course, equal to the applied axial load, Nx; while the second

constant is' zero from considerations of symmetry, so that:

VxL =-V (64)

54 Also by adding equations (61) and substituting the above:

M + M 0(65)
xu, X xL,x

which means,

M +M Mx Constant (NO)
xu xL

With the use of equations (60) and (64), the iongitudinal stress (58) may be written• in the

general form:

(k) 1 0-o (k) (k) o R(k) o
a x : U •1Ix 'wxz X-T +'R1 'xz,x +R2 axz,xxx

.Q1

+ R(k) +R(k) I +ER(k) + (Qk)(73 R 5 xux 4  6  Vu,x (67)

which is applic-3bie to both upper and lower laminate. When the above is substituted into

Sthe first of equozions (30) and (31), one obtains the stress resultants and stress couples on

the lam-natas:

u 01 uo u +0,_ruON Nxe =A Allex - 11 Wxx + R1 lxz~lx + z x Z,xxx

-I ZU V +~~ ZN (8)

11 xu,x 12 Xu,xxx xi
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NA A11e xB 1w I R I+R 12 Oxfx, x

+ L v L
11 xu,x 12 xu,xxx x'L

u 0 -u 0 U 0 U 0M B11c -D1 W, +R a +R22  6

+Z v +Z v m cont'd)
21 xu,x 22 xu,xxx xii

21~ ~~2 xz,- 2 xxxx

where 81~0DW

N

k=1 11

N h

k=1 QkI'I

N h

k=1 hI I

N N

hk-

R 21 1 ()W

k=1 hk
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N hk
SR22:f R=()(k z dz

k=1 hki

N T(k)
N'x --*~ •'- •---'(hk -hk- )

N TIk)

N# h

x 1~ (h•-•1

k=l

I h

(k;j Rs(.(k),d

Sk=1 h k-1

N k
Z 12 7 f ,[" R4(Z)(k) + R 6(z) (k) ]dz

k=1 h k..1

N ~h k

j [R (z)(k) ( z czZ21 j
k=1 h k -1

|N h k

Z2(k) +R(k) z zdz

!! ~ ~k--I h

In the above, the supers::ripts u and L are omitted for convenience.

S4.2.4 Governing Differential Equations

SDifferentiaiting equaticrns (68) and substituting i•,to t+e firsi of equations (62) and into

t ~equation (651', giv:es in rmatrix fotm.
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axz, xx
0"0.

xx 1 xzxxxx (69)
r0rall D 111 I-w,•XI R21 RR2 2  z 2 1  z22- v x:0 (9

BXU 1 XD

V

xu,xxxx
where:

A u +A L

B u + BL et

0Solving for eo and w. from equation (69) yields:So x Wxxx

"00

£o Rl R1 7ll
XX12 11 Z12 xz,xxxx (70)

00

t-W, xxxI R21 Rx22 21 Z22 Vxu ,xxx

2 z 2uxu,12uxx

in which:

IR 21 RF22 f2l 'Z22- rB I' D UJ LR 21 R 22 z 21 z 22J

Substituting the first and third of equations (68) into the first of equations (59) and (61),

respectively, and using equations (70), one obtains the following two coupled differential

S~equations:

cr +R*1 a +R12x*x x a 1 + Z* Z 2 =0
xz IIx'x 1 zx IZX XU,X XU, +Z 2V IXXXX

(71)
.Rx* x a 0 R + V + Z* V + Z V =0

21x'x 2 z,xxxx xu 21xu,xx 22 xu,xxxx

where:
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• • • = u u •1 u-
R* = Au R B R

R* Ru ABu B u R
2 1 2 21 12 11 21

Rk =Ru u 1 uR

22 22 11 12 11 22

Z U A U -Z11 - 11 1Al 1I - 11 Z21

Z* -A Z -B Z
12 12 11 12 11 22

Z* ZU aBu D u U
21 21 11 11 11 21

Z u B u D U 7
22 22 11 12 11 22

Combining equations (71) to eliminate V , one has:

V =t V +ta° +0t., + 0  (72)
xu,xx xu 2xz + xzxx +4 xz,xxxx

where

t ZZ*

t2  Z2 2/s1

t R2 t + R t3 21 1 11 2

-, O* O*-Z*

1 11 22 12 21

t4 =R* 2  + R't

Differentiating (72) twice yields:

: t V + t 2 xzx + ta"0  +t 0  (73)
Sxu,xxxx xu, xx . xz,xxxx 4 xz,xxxxxx

Substituting equations (72) and (73) into the second of (71) gives:
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v t 0T 0 + Y0 ( 4

Vu =ta +t0a° +t~a +t0a 74

xu 5 xz 6 xzxx 7 xz, xxxx 8 xzxxxxxx

in which:

t = - s3t2 / s2

t6= (R* + Z 2 t 2 + s 3 t3 ) /s 2

t7  _ (R2 + Z2 t +s3 t4)/
s 22 223 3+/2

s 2 +s31i
s=Z*1+ Z*2t
53 21 22 1

t8  Z22 t4/s 2

Differentiating equation (74) twice and substituting it together with (73) into the first of

equations (71), one obtains the following eighth order differential equation in a:xz

C Y0+ C C0  +C a0  + C a0  + a0  0 (75)
C1 xzxxxxxxx 2 xzxxxxxx 3 xzxxxx 4 XZXX xz

j where

C1 :s 4 t8

C =Z* +
2 12 t4 + s4 t7

C R* +*t+s t63 12 'Z2 t 3  4t6

C =R* + Z* t + S t
4 11 12 2 4 5s4 : RI + Z* 2 t1

The general solution to the differential equation (75) may be written in the form:

8 
Xx

X : A. e (76)
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where X. are the roots of the equation:

c 8 +C X6 +C3 X4 +C 4 X 2 + 1 =0 (77)

By letn2~ 1
SBy letting T1 X 2and dividing through by C this becomes

4 3 2
11 + I1 + +C3 TI+ =0 (78)

where

' J+1 i=1,2,3
Cl

IC-1

C 4 C1

In general the solution of equation (78) will yield a pair of complex conjugate, or

imaginary roots, and hence the form in equation (76) does not lend itself for numerical

computations. Considering, for example, the case in which equation (78) has two real

roots, one of which is piositive and the other negative, and a pair of complex conjugate

roots, the solution, equation (76), may he wrileten in the alternate form:

O"x C eX
S1 1a =A e +A e +A o$xAsnxx 1 2 3co 3 + 4sn 3

+ e (A5 cOSsX + A6 sir,• 5x)

+ e (A7 cos5x + 8 sins 5x) (79)

where a. is the real part and I. the imaginary part of the complex root:I I

X. = C_. + '5

In general one may write equation (76) in the form

8

e = A (80)

3=1
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where each function rpj has one of the following five forms:

c.X
e I

coso .x

sino x

C.x
e 1 COs5.x

a'.x
e I sin .x

For the case when the joint configuration is symmetrical with respect to the middle surface

of the adhesive layer, i.e.

u LAll =All

uA
Bl =-BLl

Du L

it can be shown that ZjI, Z*2 , R*I, and R2 are zero and the two differential equations

(71) become uncoupled. Instead of equations (80), one now has:

4
x H

i j=1
(81)

8

3xu AiCPi(x)

j=5

In addition, one finds for the symmetrical case:

R11 :R12 Z21 22 0
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4.2.5 Boundary Conditions and Solution

The eight constants, A. in equations (80) or (81), must be determined from the boundary

conditions of the problem. The first four boundary conditions are as follows:

aoo CO (0) =0Oxz xz

oL =a (L) =0

V =V (0)=82)

V Lx = Vu(L) = 0xu xu

In other words, the adhesive shear stress and the transverse shear forces vanish at x = 0 and

x = L. In the Goland-Reissner analysis, the adhesive shear stress would have its maximum

va ue at these points, which is, of course, a violation of the boundary conditions.

The loads and moments at the ends will provide the remaining boundary conditions. It will

be necessary, however, to determine the strain and curvature at the reference surface

first. From equations (70), after integrating:

e C + a + 'ZV + 'Z V + Ax IR'11 xzx 12 xzxxx I1 xux 12 xu,xxx 9
(83)

w, = 2 0.o + -- a +7 0V+
-Wxx =R21 axzx R22 xzxxx Z21 Vxu,x Z22 VxuxXx + A10

Substituting this into equations (68), one obtains:

N -Ri 0 -0 R* a 0 - Z* v -z2v

XU xzx 12 xzxxx xux 2 xu,xxx

+A u A u+B u A -N'Al A9 + 1 Bl 10 xu

(84)
N R** 0 + R** o + **V + **

xL 11 xz,x 12 xz,xxx +Zl xux 12 xu,xxx
L L -N

+Aý A +
11 9 + 10
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M =R* 0  -R* a0  Z* V OZ Vxu 21 xzx 22 xzxxx 21 xuZx 22 xu,xxx

+Bu A+ u A -M'
11 9 11 10 xu

M OR* + R** a + Z** V + Z**V
xL I2 xz,x 22 xz,xxx 21 xu,x 22 xu,xxx

* L L- M
+B11 9+11 10 xL

where the R*. and Z*. are as defined pre,,iously, and:1;II

L L LR** =R +A +B RR11 R11 21

R** =RL + A L -

12 12 11 12 11 22

R** =RL + BL - + DL21 21 11 Dll121

** L + . - +L -
R**=RL + B +DL R22 22 11 12 11 22

Z** =L +A L - +B LZ11l: 11 A1l 11 B11 21

Z** ZL +A L - L Z
12 12 11 12 11 22

** L + L-- + L--
21 21 11 11 21** L + L- +DL

22 22 2 1 1 1Z22

With the additional two integration constants, A9 and A10, there are ten undetermined

coefficients and therefore six more conditions are required for a solution. Although it

appears that eight more boundary conditions (two loads and two moments at each end) are

available, only six of them are independent. Because the first of equations (62) and

equation (65) were used in the derivation of the governing differential equations (71),

only three load and three moment conditions can be specified. As shown previously:
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M +M =Mxu A x

Nxu +NxL =N
xu ~x

where N is equal to the applied load and therefore a known quantity. M represents thexx

total moment about the reference surface and can be determined from the condition that

the slope is zero at the ends and at the center of the joint.

In the region AC of the lower laminate (Figure 1), the strain and curvature will be

assumed constant and equal to ex and W'xx, respectively. The slope at C now becomes:

-o = LI1 -o (85)

The load and moment will be constant also, and are given by:
N° L- -_L -o -N

=N=A e WL L-xL 1 1 x 1 1 Wxx -
(86)

M°L =M 0L-o DL- -M'
x = l x 11W'xx xL

By eliminating e from equations (86) a, . bstituting (85), one obtains the relation:

L L1B -L -1 11-o
M ----+M (N + N' L) l W-x W-

A.A L x x (87)

where:

2
Dll =Dl "A 11-"

In a similar manner one finds for region DE:

-L = _ - (.$w,1 -L2 W, xx(88)

and:
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M +M' - (N + N' L1--L (89)

An expression for the slope in region CD is obtained by integrating 1he second of equations

(83) with respect to x:

B or = o - 1 (90)WIx R R21 crxz,x - R 22 a xz,xxx 21Vxu'x - Z 22 Vxu'xxx-Ax+l (91

Before matching slopes on both sides of points C and D, an inconsistency of minor

importance must be pointed out. According to equatinn (54), the slope varies through the

I thickness of the laminate in region CD. However, beam theory was used in region AC of

the lower laminate and in region DE of the upper laminote to derive equations (87) and

(89). It would therefore be better to use the average slopes of the lamirnates at the ends of

region CD. These average slnpes follow from equations (54), (60), (64), (82), and (90),

r• j hence:

w-0 (_L CIO L 0
"x 4AV +(P - Z22)v ux 11L(91)

-L U _ 00o &Pu -- LW'x (P4Av , + (P6A 22)Vuxx - A L + A

,,here:

4 1 [P4 (h) 1) + P4(hN)(N)IP4AV 4 2 4+

A( 1) P (h(N) + P7(hl)( 1) + P7(hN)(N)
I 6V P 6 (h1)1) ,(N) 7 N))

Substituting the above into equations (87) and (89), one obtains, after rearranging:

L -00 L I(P LA _-22oo + -- + A' + - MS: (P4Avxz, xx (PA 22 x~u ,xx x

I B1 1  ()(N + N(
! - -T L - T (2

and:
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Y

(Pu oL u -22ýVLU L+A4AV 22Kzxx (P6AV x xx 10 11

L2 L2_ Bul I (N + N (93)M M -f5u x 61 xu A u X xu

Equations (92) land (93) provide the conditions necessary for tne determi, ation of the total

moment and the integration constant A 'I- Six independent load and moment boundary

E- conditions are given by:

xu (0)

xu (L) x

xu (x) A (x) X
(94)

xu (0)

M XUM = MX

M (X) + M.. IX) = M
xu x

Equation (82), (92), (93), and (94) represent a system of twelve conditions with twelve

unknowns. In matrix form one may write:
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IH 7

0 z(L) "H1, H1, H," A1,

z H2 , 1  H2 , 2  H2 , 12

Vxu(0) - - - A3
Vxu(L) - 4

txu (0) - 5
VAxu(L) - 'A 8

xu NxLM~()- - -8

/rx(L) - _-M

eq. (93) A 9

eq. (92) -A 10
/•4 -- - -- H2 AMI

The conditions involving the transverse shear force are obtained from (74) qnd those

involving the stress resultants and couples are given by equations (84). Equations (95).may

[He (A*3 )-C* (96)

where the coefficients of a[H] are given byq

H 2, iA= '°i(L)

H 3, i (0)

4,1 =

H .=i(O)

H5, i
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* ~H6 (=L)

H =0

8,j

H9 .'i p(L)

'I u

Hlo.(P4AV ~22ý'~

H11 i 4=PAV R22PP"(0) + ('A Z22 1 (0

H1  0

i~t 5 cpi +t6 cp.l+ t7 ,,i + t8qiv

p - * I p! R*2!"' j-1,2,...

H. =0 i=1,2,3,4 :9,10,11,12

H =H =C i5,6,7,8i,9 11

H ~H A u
5,10 6,10 11

H =H B
5,11 6.11 I's

H =A
7,10 11

H7,11 B11

H =H B
8.10 9,10 11

8,11 9,1 1
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H =0
H,12

I _Lj

10,9 -

H 0
10,10

SH -LH10 , 11

H =10,12

H L1
11,9 -L

1H1  =0

SH 1 1 1 1 =0

H I 1, 11

H1 2 ,9 1

HB"12,10 11

H 12,11 D 1I

S12, 12

and the coefficients of the column matrix [C*]:

C! =0 i = 1,2,3,4

C•' = N
xu

C*J N -fNI
x Xu

C* =N +N' +N'
7 x xu A4
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C*=C*M'
8 9 Xu

121IM B0US= - (N + N
D10 1 xu ANIJ

LI B L
C* M - 1T.-(N +Nh)

C2 = MI + MI
xu xL

Solving the iet of simultrneous equations (96) yields the unknown coefficients A! and

therefore A. an6 M! x
[A") - [H] -1 .C*(

After determination of the coefficienis A., ihe shec-r and normal stresses in the adhesive

may be calculated from equations (80) and (60), or in the symmetrical case From equations

(81) and (60). The interlaminar shear arid normal st:esses in the adherends may be

obtained from equations (43) and (50), and the longitudinal stresses in the larnincte are

given by equation (67).

4.3 Double Lop Joints

For the upper laminate, the analysis is identical to that for the sing!e lap joint, but some

minor modifications cre reuuired with respect to the lower laminate. As a result of sym-

metry, the laminated plate os a whole wIl! not incur any bending and therefore it will be

reasonable to assume the shear function, cqx, to be zero for the lower lominate. With this

assumption, the transverse shecr stress will vary linearly through ihe laminate according to

the relation:

a(k) az ( 1 - h'\ (98)

while the shear strc,'n AZ becomes:
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C/
= S (k )U (99)xz 55 (1- hN xz

Substituting this into equation (10) and integrating with respect to z yields f'.)r the

longitudinal displacement:

zu(k) uo Wxd+.(k) o(10
_ - f wcn + G I a (100)

0

where

G (k) N) + c2(k)

The longitudinal strain is obtained by differentiating the displacement (100) with respect

to x. Hence:

z
C(k) = C f d+(k) (101)

X X WX 'l"XZ•X

0

The shear force acting on the lower laminate becomes:

VL = - -az hN (102)

The normal stress in the kth layer is found by integrating the second of equations (49) with

respect to z and substituting (98):

(k =a0+r0 + z(103)
z xz,x 2h N

Equation (53) is valid. By substituting the expressions (98) and (103) and integrating the

result with respect to z, one has for the slope:

w(k) = o + .(k) ao + p(k)o + "(k)oa
'x Wx 3 xz 4 xz,xx 7 z,x

where

P3 (z) (k) = s(k) z p(k)
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(k)= (k) (k)4 33 T •--+

P7(k) s(k)a z + p(k)

Th cnsans(k) (k) (k)
The constants pk3 p4 , and p7 are determined from conditions of slope compatibility of

adjacent layers at their interfaces. From the above one obtains:

Z =z +p(k)o + (k) 0o x+ (K) (
JWxx = ZW'xx 8 xz,x P9 xz,xxx 12 z,xx (105)

o

in which, as before:

z k-i h

P . 5 (z)(k) = f P.(rn)kd-n + P •n(m) d

hk -1 m=1 hmn -I

1 3,4,7

The equilibrium equations for the double lap joint are the same as those for the single lap

joint except that in place of the second of equations (60), one has:

V + cy - az = 0 (106)
xL,x Z z

The longitudinal stress for the lower laminate may now be written:

(k) 1 I zw(k) o - T(k) + R,(k) o +R(k)o

x Q1-k- X xx I 1 xz,x x2 z,xxx

+R (k)v +R(k)V

3  xux 4 xu,xxx (107)

(k)(k) (k
which is identical to equation (67), if the quantities Pk) and R in that equation

are set equal to zero. Equations (64) and (65) are no longer valid but the first of equations

(62) still applies and hence:

N + NL N (108)
SA0 x
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As mentioned previously, however, N in this case represents only half of the applied
X

load. The expressions for the stress resultants and stress couples given by equations (68)

remain valid, but the coefficients, R and Z.. b must be modified in accordance with

(107). Since the slope of the lower laminate is zero for z = hN, one has from (104), and

the first of equations (60):

o (h _(N) o PL )(N) o L (N) (109)
WIx 3 N) xz 4 N Pxz,xx - P7(N Vxu,xx

Differentiating the above, substituting into the first and second of equations (68), and

using (108) yields:

oILL(N )l0 L(N) 0A +1 R+ B P(h 0 +1 + P(h )Ia
11A x Rli 11 3' N' °xz,x 112 BllP4' N' Ixz,xxx

+Z V IZ+ P(h)(N)iV =N + N' +N'
1lxulx t2+1P7 N)i xu xxx xu xL

and hence:

e 0 °0 + 0I ° +Z V +Z -
S0xzx + xzxxx 11 xu,x 12 xuxxx

+ (N + N' + N' ) (110)
A x xu xL

where
R R +B PL (h (N) A

R11 = R11+B11P3(hN) 1/A

12 - R1  1 + BllPL(h (N) /A,,

Zl n= - Z1 /All
L (N)

Z12=-IZ 12 +B11P7(hN) ý/Ajl

After substituting (109) and (110) into the first and third of equations (68), and using the

equilibrium equations (59) and (61), one obtains two fourth order differential equations
identical to (71). The coefficients R.. and Z*. for this case are given by:

5I 1
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R* R u Au u (h(N)
Rl -R1 1-A1 R1Rll-BI ] L3 N

R* RU A u W u P L, ,(N)
R12 :-12 -Al R12 - Bl 1r4 (hN )

RI RU B w U L- (N

21 21 411 1P3( N)

R* = -R2 -BI Ru B -Du PL(h )(N)
22 22 11 2D 11 4 N

•= u u 'I u ,L, ,(N)
7I I 7  AUI z 11- B I I P?(h N"Z'i -11 11l 11 "Bl f7IN

Z* u Au 7

12 12-11 12
=- u Bu Z1 D u P7( hN)(N)

S• Z 21 11 11 11 ;Dl N

7 U U

Z22 22 11 12

The governing differential equation (75) remains unchanged but the modified definitions

for R!. and Z.V must be used to determine the coefficients C1 through C4 . The solution is

then again given by equation (80).

Equations (90) and (109) represent the slope at the reference surface for the single nnd

double lap joint, respectively. The two expre3sions become ;dentical by setting:

If 21 LP(hN)(N)

S- .L, ,(N)
'F22 = '4(h )N

22- ,(L.(N)-Z22 = 97hnN)

•" ~Z2 =AI =A'I =0
z21 =A10= 11'

for the double lap joint. Similarly, by letting:

]-- -(Nx+ N' + N '=A 11
A 11 xu xLA
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in equation (110), the expression for the strain e becomes identical to that given by (83)

for the single lap joint. The correctness of (11) can easily be verified by substituting

A10 = 0 in the seventh of equations (95). Since equation (66) is not applicable and the

condition of zero slope at the ends of the joint (point A) is satisf ed automatically, the

last two of equations (95) are discarded for the double lap joint. By dropping the last

two columns of the coefficient matrix rHJ (Ohose corresponding to A10 and A• 1) a sys..em

of ten equations with ten unknowns remains; the solution of which is given by (97).

4.4 Numerical Results

A number of runs were made w rh the computer program BONJO I in order to verify the

numerical results and to study the effect of certain parameters. No experimental data

could be found that provided information with regard to the stress distributions within a

joint as virtual!y all such data deals with overall joint strength or average shear stresses.

Comparisons were made, however, with the Goland-Reissner analysis and with finite

element analyses performed at Lockheed. The results are presented arid discussed below.

4.4.1 Adhesive Shear and Normal Stresses

Adhesive shear and normal stresses were calculated for a single lap joint with aluminum

adherends, using the Goland-Reissner procedure for joints with relatively inflexible

cement layers as reported in reference 1. The same joint was then analyzed in detail with

BONJO I (symmetrical version) in order to make a direct comparison between the two

procedures and study the effects of transverse shear and normal stresses in the adherends on

the adhesive stress distributions. These effects are ignored in reference 1. Curves Q
and ) "n Figurc-, 4 and 5 show a direct comparison of the adhesive shear and normal

stresses between the Goland-Reissner procedure and BONJO I.

It can be seen from Figure 4 that the peak shear stresses do not occur at the ends of the

joint and that the magnitude of these stresses ;s considerably lower than those calculated

with the Goland-Reissner approach. This is attributed to the fact that the transverse shear
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4 k.20" Aluminum

II\ ._0 1.0

3 __ Adhesive Adherends

E- 260 ksi. E - 10,500 kai
G = 100 ksi. G - 4,000 ksi.

!• •• a= .O05 in. tu-tI - .20 in.

(I)

2

r!3

ELASTIC, ISOTROPIC AN~ALYSIS

O Goland-Reissner Analysts (infinitely rigid adherends).

i .D Lockheed bonied Joint Analysis (BONJO I), including effect
of transverse shear and normal stress in adherends.

Q BONJO I, neglecting effects of transverse shear ard normal
stress.

4&) 301JC I, neglecting effect of normal stress but accounting
for transverse shear.

O BONJO I neglecting effect of transverse shear but accounting( for noral tress.

• 0

- - • x(in.)
FIGURE ADMESIVE SHEAR STRESS DISTRIBUTION IN SINGLE :AP JOINT,

COMPARISON 4ITH GOIAND-REISCNER ANALYSIS
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.20" Aluminum

1000#

:.0 1.0

ELASTIC, ISOTROPIC ANALYSIS

2 Goland.Reissner Analysis.

1 FONJO I, including ef"ec' .f t-ansverse shear
and normal stress.

,i)

BONJO I, neglecting effects of transverse shear andO normal stress.

Adhesive A-.de!ends

E = 2(0•ks =10,900 ksiS~G ,- 100 kSi 000•OO ksi

t,= .00- in. t.= t = .20 in.

-2 ___ _ _ ____- x(_n.)

.0o 2 . .30

FIGURE 9 ADHESIVE ',ORVAL STRESS DISTRIBUTIONA ;- IE20. I-} JOINT,
COMPAR ISON W ITH GO"AND-REISSNER ANALYS IS
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moduli as well as the elastic moduli through the thickness of the joint have finite values

in the Lockheed analysis. Curve ( shows the adhesive shear stresses obtained with

BONJO I if both the transverse shear modulus and the modulus of elastic'iy of the
adherends in the direction normal to the plane of the joint are made very large and it is

shown that the stresses in this case agree much closer with those of referance 1. Curve D
represents the case when only the effect of transverse shear is accounted for, while curve

SG takes only the normal stress int,. account. A somewhat surprising result 's that the

larger part of the difference between the two procedures lies in the fact that, in the

Goland-Reissner analysis, the adherends are assumed to be in.compressible in the direction

normal to the plane of the joint. A comparison between the two methods with regard to

the adhesive normal stresses (peal stresses) is shown in Figure 5. Again, most of the dif-

ference is caused by assuming that the adherencs are incompressible normal to the plane of

loading.

The effects of transverse shear and normal stresses in the adherends on the adhesive shear

stresses hove also been investigated for an aluminum double lap joint. The joint was first

c•-alyzed by using the actual isotropic material properties of aluminum. The resulting

shear stresses are shown in Curves % of Figures 6 and 7. These curves therefore

represent the actual shear stresses for the joint under consideration. In order to determine

the effect of transverse shear, the same joint was analyzed again after arbitrarily decreasing

and increasing the transverse shear modulus G' by a factor oa, 10. This is shown in Figure

6 by Curve: (D and @ , respectively. No appreciable change in shear stresses

resulted when the modulus was increased but when the modulus was ducreased from

4.0 x 10 6 to 4.0 x 105 psi the peak shear stresses were reduced significantly. The effect

of the normal stresses in the adherends on the adhesive shear stresses was determined in the

same manner and the results are shown in Figure 7.

The effect of using finite values for the transverse shear and normal stiffnesses in the

adherends on the adhesive shear stress distribution in a composite double lap joint is shown

in Figure! 8. In this case BONJO I is compared with the modified Goiand-Reissner method

described in Ci,apter 2.0. The magnitude of the peak shear stresses computed with the

latter method was more than 50 percent greater than those calculated with BONJO I.
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These results substantiate the statement made earlier that an analysis based on the

Kirchhoff assumptions could lead to unacceptable errors.

SThe presence of residual thermal stresses may become important in the analysis of composite

joints. These stresses are caused by bonding at elevated temperature and subsequent

cooling to operating temperature. The adhesive shear and normal stresses in a boron/

aluminum double lap joint caused by a temperature differential of -175F is shown in

Figure 9. Since the thermal shear stresses are positive on one side of the joint and nega-

tive on the other, they will usually cause an increase of the maximum adhesive shear

stress in a loaded joint. This is illustrated in Figure 10, which shows the joint subjected

to a load of 2250 lbs. The adhesive shear stresses due this load cre compared with those

resulting from the same load plus a temperature differential of -175?F. The maximum

adhesive shear stress was increased from 3550 to 5400 psi as a result of thermal effects.

Comparisons with finite element analyses (FAMAS*) were made for a few lap joint con-

figurations and good agreement with BONJO I wos obtained in all :ases. One of these

cases will be presented here. The joint configuration and the material properties used are

given in Figure 11. The joint was modeled with triangular anisotropic constant stress

elements in the x-z plane as shown in Figure 12. Element stiffness properties corre-

sponding to a plane stress condition (cr = a = C = 0) were used io the program. ASy xy yz
comparison of the adhesive shear and normal stresses obtained with the two methods is

given in Figure 13. Agreement between the two procedures was extremely good except in

the immediate vicinity of the joint edges where, as expected, it was not possible to

approach a zero shear stress condition with the finite element analysis.

4.4.2 Adherend Stresses

Axial stresses in the boron laminate and the titanium splice plate for the joint configura-

.tion shown in Figure 11 were calculated with BONJO I and FAMAS for the purpose of

comparing results. The titanium was divided into four equal slices and the stresses were

*Flutter And Matrix Algebra System; Lockheed developed analysis programs.
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calculated at the five locations shown in Figure 14. Finite element results are shown at

the outer surface, the midsurface and at the titanium/adhesive irnterface. The stresses

across the thickness of the splice plate are essentially uniform for a large portion of the

joint. In areas of appreciable bending BONJO I shows generally higher gradients than

FAMAS, but it appears that this is a result of the fact that the FAMAS model was not

detailed enough in these areas. Axial stresses in the boron laminate were calculated and

plotted in Figure 15 for the three locations shown. Good agreement with the finite ele-

ment analysis was obtained. Finally Figure 16 shows a plot of the transverse shear stress

and normal stress at the joint cross section x = 0.025" which is near the point of maximum

adhesive shear stress. Finite element results are not shown here but agreement with FAMAS

results was excellent.

4.5 Joints with Non-Linear Adhesive Stress-Strain Behavior

4.5.1 General

A major drawback of the method of analysis described in Sections 4.2 and 4.3 is the fact

that it is based on the assumption that all stresses in the joint remain in the elastic range.

This assumption may usually be justified with regard to the stresses in the adherend

materials, but the joint configuration is generally such that the adhesive stresses will

reach the proportional limit of the material at an early stage of loading. For this reason it

"became necessary to extend the linear analysis, to permit non-linear stress-strain behavior

in the adhesive material. Several iterative type methods were investigated to solve this

complex problem. Some of these are discussed below.

4.5.2 Secant Modulus Approach

The portion of the joint defined by 0 • x - L (see Figure 1) was divided into regions and

secant moduli were calculated for the adhesive material based on the average stresses in

each region. These secant moduli were then used in place of the elastic moduli of the

adhesive to obtain the coefficients of the governing differential equations for each region.

Conditions of continuity and compatibility were satisfied between adjacent regions, which

together with the boundary conditions at the ends of the joint were necessary to obtain a

solution. This procedure was used to establish basic joint design parameters early in the
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program but it turned out to be unsatisfactory for joints in which a relatively large portion

of the bond layer is in the plastic range. Computational difficulties arise when matching

boundary conditions between adjacent regions because of the discontinuous nature of the

analysis. For this reason development work using this approach was discontinued.

4.5.3 Analysis Based on Deformation Theory of Plasticity

The theoretical work for this procedure has been completed and is described below.

Assuming that the only non-zero stresses in the adhesive are the shear stress, a , and the
0

normal stress, az, one may write the stress-strain relations in the adhesive as:
p

x Z X~v o

V 0- +ey E z yp

o 0 (112)
Z' Ea zp

0

xZ G xzp

where e e , and c are the plastic strain components. The equivalent stress,
xp yp zp xzp

equivalent total strain and total plastic strain are defined by the expressions:

22

a = Vao +z

Z YP

e -xzJ (113)
"2 (ex +E -e ) 2+

y xz z x z

-- 21 - +

which are related by the equation:A_2(1+v)a -a+
S+ +=14

3 E p 3G p (114)

With the assumption that the volume remains constant in the plastic range one obtains:
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ir2 2 - + I

p 3 xp zp -3 xprzp ; (1xzp

!t can be shown that the individual plastic strain components are given by:

e

xp 2•z

Pa (116)
zp -- z

pa0

xxp -xz

By using a Ramberg-Osgood representation of the stress-strain curve in the yield region

one has

7G (117)

and since n and a0.7 are constants for a given material, the plastic strain components

(116) may be determined if the stresses o and a ore known.
z xz

If in the linear analysis procedure, the elastic stress-strain relations a-e replace-d by

equations (112) and if the plastic strains are assumed constant through the (.ickness of the

adhesive, the two governing differential equations are ro longer homogeneous but in the

Torm:
4ooo

G0+ R* C,0  +R* a + Z*V + Z* V
n-7 11 xzxx 12 xz,xxxx 1 xuxx 12 xu,xxxx

"I1 exzp,xx - '"2 czp..xxx
(118)

R2xz + o +22 + V + Z7 V -v21 axz, xx 22 -",x x c, -21 xu, xx 2 xu,xxx.'

"T13 exzpxx - *.4 Czp£xx

whe.-e
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1 Au (I + A1a) + B u AG'fl1 =2ta 11 1 11 21

1 i u + u 1 + Ab2 a I I I

"3 tB• 1 (I + Aa)+ Du Aa2 J

"r14 2 •t 0 [B1 Ab1 + Dll(1 +Ab 12)

Aa1  1 IB1I(B~1 -B]I) -D1 1(A•1  Aj1 )
11A 2
1 u L u Li

o _a iBl(A, -A1) -_A,(B, _-B)lDIIi2--l ull'1 1 li i

661 = JBII(DI1 -DLI) -DII(B11 _BLi)
D1111

6b = JB11(Bul - LI -A,(Du,- Lil2 - I I I -° ,I
D-A 11

As was done in the linear procedure, the two differential equations (118) may be combined

into a sit.gle eighth order differential equation:

7 d'F.
Ca 0  +C 0  C 0  +C 0

I xz,xxxxxxxx 2 xz,xxxxxx 3 x z'xxxx 4 xz'xx xz Zý xS~i=2

(119)

where

P7= 2 1 2 xzp

P4 = 21,1 - I lT13)xzp

"=I - (Z*l74 - )e
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F6 = (Z*22711 23 Z*"3)exzp

P7 = -(Z*-202 - Z2104 )Czp
P7  2

In deriving the differential equation (119), the following expression was obtained for the

transverse shear force in place of (74)

0 0 +t 0

xu 5axz t6az,xx t"xz,xxxx + .XZXXXXX

5C + 7'6zp,xxx + .17ýxzp,xxxx + 18 C : (120)q5 xzp,xx + l8Czp~xx)xx

where

! 5T - "Il + 'n3

.4

s3
!6 s: •'!2 " 4

1iiT17 s(.nIZ*2-23Z2)

11 4 ( -n22 i4 Zj 2

and s3 and s4 are as defined in Section 4.2.4.

Since a direct solution of equations (120) is not possible, an iterative procedure must be

used so that the plastic strains and their derivatives will be treated not as unknowns, but

as known quantities obtained from the previous iteration. Attempts to represent the plastic

strains by continuous functions such as truncated Fourier series or power series were unsuc-

cessful because of the extremely high gradients that exist near the edgcs of the joint.

Other possibilities were investigated, the most promising of which appeared to be the use

of Green's functions coupled with a numerical integration procedure. Using the latter

approach, one may write the solution of the differential equation (119) in the form:

8 x 70~x S F.. A ix)+f (-:) dlGx ( )x' d;D (121)

H=1 o i=2
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!i.

where G(x - •) is the Green's function ot the differential operator:

C d + 8 d d4 d2+

dx dx dx dx

The first summation in equalion (121) represents the elastic solution to the problem. The

-form of the Green's function is dependent on the type of roots resulting from the linear

solution. In general, one has:

I 4

G(x -)= K n*(x-) (122)
n 'n

n=l

in which each of the functions *0n has one of the following forms:
ýn

1) sinha(x. )

2) sinci(x -•)

3) sinhac(x - •) coso(x - 9)

4) cosha(x - g) siný(x - F)

corresponding tr a real positive, a real negative, and a pair of complex conjugate (or

imaginary) roots of equations (78), respectively. For convenience it will be assumed that

the Green's function contains one of each of these forms, hence:

G(x - E) = K1 sinh l(X - 0) + K2 sinO3 (x - 9) + K3 sinhcL5 (x - g) cos55 (x -g)

* + K cashcx5( - g) sin$(x -((123)

4 D 5 Z

The constants K are determined from the conditions:
n

dG(O) -d3G(O) _d5G(0) 0
dx dx 3  dx 5

d G(0)- 1 (1 2A)
dx7 CI"dx7 1

Higher derivatives of the Green's function are given by:
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n--
dnG(x -•) n• •' °hl•-• -) 2 3 •°3x -

dxn
+ (anK3 + b nK4) coshac5(x -) cos05(x -

+ (anK - bn K3) sinha 5(x - •) sinp 5(x -

m m (125)
d G(x-) _K Lm sinhi (x - g) + (_1)2 K2Om *inp (x _

dxm 11 12`3 5Il 3 X

+(amK3 + bmK4 ) coshc 5(x - g) sin 05 (x -

+ (bm 3  amK4 ) sinhac5 (x - g) cos• 5 (x -

where m is an even and n is an odd number, and:

a =0.0

an = 0 5 an- 1 +5bn-1

am 5(5a 1 + a5 bm- 1)

b =10

bn = 5bn-I - iL5anI

b bbm -' 5am-1 - 55bm-1

Equations (125) may be written in alternate form:

dnG(x-) _l()e cosS5x + g2n( )e sinx

dx n Oln

-+ g3n(9,)e-x cos5x + g4n(:)c sinO5x

+ gsn(ý) coso3 x + 96n(.;) sinf 3 x

•oz-t 7n D~ + g8ngo

• 8

+.9 (.)Cpi(x) (126)
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and similarly:

dm G(x -) g gim(,)epi(x)

dx j=1

where:
-a5

gn) =e (K-I cosa 5 g - K2 sinP 5•)

= e (K' siný 5 • + K2 coss D

a5-
g3n (t) = e (K'I cOsO 5• + K--2 siný 5 F)

g~()=e (K1I sin135 • - K'2 cosi35 •)

nL-1
(9) = (-1)2 K 2 Co3 cosl%3 -

n-I

=(1) 2- K/ a CSn-1
g n(g) = (-1)- - Kt3 sinia3

1 n

g7 n() = 1 K1 e

g•1n

1 n a1;

g8 n(o) =2a 1  K1 e

and.

-CLglm(9) = e (-K 3 sina 5 • - K4 cOs3 5 ')

-a5F

() = e (K3 cos -K sin5)

(9) = e (-K 3 sinl 5g + -4 cosi 5 •)

•5-
g4rn(:)l= e (K3 coso5 g + K4 sinOP)

m

sm(•)= - (-1)2 K2 om sind 3 •
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m
•, g~~m(•) = (-I)2 K2 13 csT 3

I m

(6m l 2 3'
g7m 2 a, K, e

I m OL19

g8m = - K I e

K 1 2 an K3 + bn K4)

Ký2 = (an K4 - b n K3)

K'3 =2(amK3
32m 3 Vm'~~

1--- 4 -'2 (a mK4 "" bmK3)

In addition to (124) the following conditions must be satisfied:

d i

-- L(G) =- 0 i= 2,3,.... (127)
dx'

where L is the differential operctor defined earlie'. EquaTions (127) lead to the

expressions:

d 9 G(0) C C2
dx9 C

diG(0)_ 291

dxG 0)1 C• c2 _ c c3 (i 28)dx II C3'2 I3

IiI

d1 (2C 22~1

The solution (121) may be written in the form:

8
07 o jA.÷ + A.x)> (x) (129)
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where:

7 x

A = ( " f ,k( )gjk( )d

k=2 o

It can be shown that the transverse shear force, V xu, the stress resultant, N , and the

stress couple, M , can be expressed as:

8

V [A. + -i(x)]Mi(x)
xu -

H=1

8

N [A +•-i•)'.x)4 W u A +BuA -N' (130)
x 11 + 11 xu

8
[A + WAi+(x)3Pi(x) + BuIA + D 1A -M M

119 1 1 1 xu
1:1

where the functions Wi(x), 1Ai(x), and p.(x) have been defined as part of equations (96).

The average slops cf the lower laminate at x : 0 atid the average slope of the upper

laminate at x = L are given by:

S~B

I-

87

"- L (P4Av + (p6A Z2L (0) 1A.

.+ I -,A P4AV(222

A1l + '1 J(22 -A)Z*D Z*204)+

(L -- 0 (131)
(PA - Z22)(R*202 - R2'*4)I DA ta (1 - 6b2)1 zp'x
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8
-L= >1 kpAV - (L) + (PV- 72ý!'(L)J jAi + (L)

i~Il+A !L:" ',u •*
A0 l +1 /•2 0,•V 222 Z12 4)
+A~IOAiC I b -1

+ (P - - k24) + (1 +Ab2) (132)
6AV L2ý2P"20 1A 2 a 2) j zp IX

L u L u
whe P4AV' P4AV' P and P are as given in equation (91). Instead of equation

It (96) one has for the non-linear problem:

[H](A*] = [C*] + (Ap (133)
p

which differs from the linear case only in the addition of the column matrix (A p. This

matrix contains all the plastic strain terms. The non-zero coefficients of (A p) may be

obtained by using equations (129), (130), (131), and (132) in place of the corresponding

elastic relations, in the formulation of the boundary conditions. They are given by:

8

A (2) =- >2 Ai(L)cD.(L)

4 8

e~p(4) = -Tj A.(L)Pi(L)

8

p I
8j=

9 
(9) - 7 (L)p.(L)
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8

j=1
)c"L + uY .uWI

- 1 (R22 - P4Av)(Z 22n2u . _ Z;2r14) - (Z2 2 _ P6Av)(R 22n2 -Ri2 4 )I

( I C1 I()-22 - P4Av)(Z*22 2 - Z 2v 14 ) - (Z22  P6 AV)(R 2 2r2 1

1 1°
2•( -ab2) zp'x

In order to determine the coefficients, A!, in equations (133), the coefficients, A , must
I

be known. This in turn requires a knowledge of the plastic strain distributions in the

bond-layer. The solution to this problem may be obtained by successive approximations,

starting with the assumption that the plastic strains, and hence the coefficients of (A 3,
are zero. Initial values for the plastic strains are therefore obtained based on elastic

adhesive stresses. The piastic strains are computed at a number of stations along the

length of the joint, so that a numerical integration procedure may be used to evaluate the

integrals necessary to determine the coefficients A.(x), defined in equation (129). After

calculating the coefficients of [Ap , new values for A. may be obtained by solution of
PI

equations (133). This leads to a new set of adhesive stresses and plastic strains. The

above process is repeated until the desired convergence is obtained.

Although the procedure described above appears sound, a number of computational

problems dealing with accuracy and convergence are anticipated. Since the developmenit

of a non-linear analysis program of this complexity is outside the scope of the present

contract, it was decided to develop an approximate but far less complex approach as an

interim method of analysis.
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4.5.4 Plastic Zone Apr.oach

An analysis procedure and associated computer program was developed for bonded joints

with non-linear adhesive stress-strain hehviior. The analysis uses a "plastic zone"

approach together with a two-stage, elasto-plastic, effective stress-strain curve. The

assumption that plastic zones develop at the ends of the over-lap when the adht-ive

stresses reach a certain (maximum) value, and then spread inwardly toward the center of

the overlap when the load on the joint increcses, was reported by Douglas Aircraft

Company, Inc. (reference 6). The Douglas analysis, however, ignores the presence of

normal stresses in the bond-layer and assumes that the shear stresses are constant inside the

plastic zones. In practice neither the shear stress nor thn offective stress will be constant

for any appreciable distance along the bond-layer. Nevertheless: it was felt that inte-

grating the "plastic zone" concept with !he linear bonded joint analysis (BONJO I) would

provide a good approximation for the analysis of bonded joints ir. which the adhesive was

f stressed above its yield strength.

The effective stress is defined accoring to the Von Mises condition as:

F2 2

U7 xz

which is identical to the first of equations (113). The effective stress inside the plastic

v •zones is assumed constant and equal to the maximum stress obtained from a unidirectional

stress-strain curve. The stress-strain behavior of the adhesive between the plastic zones is

assumed to be linear elastic; hence, the slope of the effective stress-strain curve in this

region will be equal to 3G. As illustrated in Figure 17, the two-stage stress-strain curve

used in this procedure is obtained by extending the elastic region until the ultimate stress

is reached, at which point the strain increases without further increase in stress. Deter-

mining the length of the plastic zones is a quickly convergent iterative process. Initially

an elastic solution is performed and adhesive shear and normal stresses are calculated at

76 locations as indicated in Figure 18. The initial lengths of the plastic zones are

se!ected so that the effective stresses are below the maximum stress level at all locations

situated between the two zones. After the plastic zone lengths are obtained, the shear

and normal stresses within those zones are reduced proportionally so that the resulting
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effective stress becomes equal to its maximum value, or:

o max o o max0 (134)xzp xz zp z

In the next step, an elastic analysis is performed for that portion at the joint which is

between the two plastic zones. Although the analysis itself is identical to that discussed

in Sections 4.2 and 4.3, new boundary conditions must be established for this problem,

which may be obtained from the known shear and normal stresses inside the plastic zones.

Denoting the length of the plastic zone near the end of the splice plate (x = 0) by x1 and

that near tMe center of the splice plate by x2 , the following boundary conditions are

defined for the center portion of the joint:

xz xzp

oL-- a (L - x
xz xzp 2

x

V° =f a° dx
xu zp

L

V =- .af dxxu zp
L-x 2

~2
. X.

No 0 a°0 dx x135)
xu xzp

f

0

L
N• NL = N - Ca° dxSxu x f/ xzp

L-x 2

N 0L=N --N
XL x xu

MO= i ao dx dx
xu f p

S~84



I.
(( da x cntd (135

Mxu = x J- Op ntd

L

For a single lap joint, tht. condition

M W(x)-M ( M'36),xu xLx) = Mx

t is also needed in order to obtain a solution. The total moment, M , may be determined

from the condition that the slope is zero at the ends and at the center of the jirint. AtI

integratiors in equations (135) ore performed numerically in the program.

The effective stresses resulting from the above analysis are getieraIly as shown by the

dashed line in Figure 18. Since the effective stresses at points A and B exceed the maxi-

mum stress level, the plastic zone lengths are increased and th'ý entire process is repeated

until the difference between the plastic zone lengths of successive itections becomes

negligible.

Figure 19 shows the peak adhesive shear stresses and the final plastic zone length at eacý

side of the joint as a function of the total applied load, for the configuration D spectmers.
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IV. FINITE ELEMENT ANALYSIS

1.0 GENERAL

Finite element analyses were performed as part of this contract for the purpose of

evaluating the numerical results obtained with the closed form analys:s program, BONJO I.

These results were presented and discussed in Chapter ill, Section 4.4. In addition,

finite element cnalyses were made for some of the step joint and mec haniaal ioint spec -

.nens, which wil! be described en this chapter.

Lockheed FAMAS Program 497 was ved to perform the numerical caiculations. This pro-

giam employs the direct-stiffness dlsplucemetot method to perform a linear structural

aoalysis icor defiecrioras and interrial loads oa staticall', loaded structures. FormulGtior an.d

decomposition of the structural-stiffness matrix are done in double precision. Anisofropic

h•iangular constant stress elements were incorporated in this program. Several options ore

available to input the material properties so that either a plane stress or plane strain

onalysis can be made. A capability to determine thermaily induced stresses or strains in

anisotropic structures las recently been added to the piogrom.

2.0 STEP LAP JOINT ANALYSES

Analyses were made of two diff-rent step lap joints of the Configuration 'B' smaI! scale

specimens. Detailed dimensions and material specifications are given on Drawing No.

7226-130213 in Appendix C of Volume IU. The first joint naoiyzed utilizes a 16-ply boron

!cminate (-13 specimen) consisting of 8 plie5 at 00 and 8 plies at ±-45. The laminate is

bondeJ to an al-iminum adherend in three steps of 0.50 inch overlap each. The adhesive

thickness was taken as 0.0042 inch, which was the opprcximate average thickness of all

test specimens. The pertinent port of the finite element model used for the ana!ysis is shown

in Figure 20. A finer grid is used near the ends of each step sw.e higher gradients exist

in these areas. Figures 21 a-id 22 show the adhesive shear and normal stresses, respectively,

along the length of the joint. Both types of sltresuis peol: at the ends of each step and
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have their moximum values at the end of +he last step where the aluminum to boron thick-

ness ratir, is largest. The lo:,.ritudiral stresses in the aluminum adherend along three

paralle! surfaces are presented in Figures 23. These surfaces arc situated so that each one

represents the mid-plane of a row of elements adjacent to the bond-layer of one of the

steps. The stresses alon6 a 'ean surface adjacent to the bond-layer build up rapidly

toward the end of the step and then drop sharply at the beginning of the next step when

the adherend thickness is increased. The longitudinal stresses in the boron laminate are

presented in a similar manner in Figure 24.

A modified analysis was performed to investigale the effect of recognizing the tension tes

between the adherends and between the adhesive and aaherends at the ends of each step

The resulting adhesive shear stress distribution is plotted in Figure 25. For comparison,

the adhesive shear stress distribution obtained in the original analysis (without tension

ties) is shown Glso. It can be seen that the peak shear stresses at the ends of the steps are

reduced significantly as a result of recogn;zing the tension ties and that the maximun

adhesive shear stress in the joint was cut by 30 percent. Because of the fact that part of

the applies load is reacted by tensile forces between the adherends, the total area under

the shear curve no longer represents the applied lood for the modified analysis. A detail,

showing how the joint was modeled at the ends of each step, is presented in Figure 25.

The tensile stresses in the shaded elements range from 2000 to 3000 psi, while the shear

stresses in these elements are almost negligible.

The second joint analyzed was identical to the first one except that titanijm was substi-

tuted for aluminum for one of the adherends. The finite element model shown it, Figure 20

therefore remains applicable. Tension ties were assumed to exist at the ends of each step.

The adhesive shear stress distribution for this case is shown in Figure 26. The corresponding

stresses for the case with aluminum adherends are given by the dashed line, for comparison.

The boron/titanium joint yields considerably lower shear stresses at the end of the last

step than the boron/aluminum one, but generally the stresses differ unly slightly.
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3.0 MECHANICAL JOINT ANALYSES

Two separate finite element models were constructed in order to perform a detailed

analysis of one of the Configuration 'E' small scale specimens. Dim-nsions and mcterial

specifications are given on Drawing No. 7226-13021E in Appendix C of Volume II. The

-1A specimen assembly consisting of an 8-ply boron laminate (-21 specimen) and c

titanium splice plate was selected. Two 0.012 inch thick titanium shims were inter-

layered with the boron in order to provide sufficient bearing for the fasteners. The first

model which is shown in Figure 27 is for the purpose of performing a detailed analysis

through the thickness of the joint. Isotropic triangular plate elements are used for the

titanium splice plate, titanium shims, adhesive layers, and fasteners. Anisotropic

triangular plate elements are used for the boron laminae. In order to properly account for

pin bending and +o determine the bolt bearing loads on the individual layers of the joint,

the elements of the fasteners are connected to those of the joint plates with springs that

are permitted to take compression loads only.

In order to study the stress distribution around the fastener holes a second finite element

model was constructed. The latter model consists of triangular plate elements in the

plane of the joint and represents a layer of titanium or boron. Again, compression springs

between the fastener and plate elements are used to obtain the bearing stresses caused by

the bolt in the iayer under consideration. This second model has been shown in Figure 28.

Average bearing stresses in the two fasteners were calculated for an applied compression

load of 1000#. These stresses were obtained from the first model by dividing the final

forces in the springs, between the fasteners and joint plates, by their respective areas of

contact. An iterative analysis was used to assure that all final spring forces were com-

pression by successive elimination of the tension springs. The average bearing stresses thus

obtained are shown in Figure 29. Peripheral bearing stresses on the fasteners were deter-

mined with the use of the second finite element model. Figure 30 shows those transmitted

by the upper titanium shim as a function of the angle e.
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Loading and unloading of the titanium shims has been studied. Figure 31 shows the shear

stresses in the adhesive layer on both sides of the upper titanium shim resulting from an

applied compression load of 10001. Peak shear stresses, of course, occur near the

fosten~rý where the loads are introduced into the shim. The position of the fasteners is

indicated in the figure.

Net section tniile stresses for the lower titan~um shim and the 00 boron layer in the

cerier of the piate are shown in Figures 32 and 33, respectively, for a load of 1000 lbs.

The-e stresse -.ere determined by taking the average Otresses acting on the layers, as

obtained from -. first f, 'te e~ement modle, cnd applying them to the second model.

The stress concentrat'on ..jctor appears to be significantly higher fc: the boron.
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V. PHOTOELASTIC STRESS ANALYSIS - BONDED JOINTS

1.0 GENERAL

An attempt was made to provide an experimental verification of the analytical stress

analysis methodology developed under the program (Chapter III). This verification was

limited to the linear analysis regime because of its relative importance in serving as the

foundation of the subsequent non-linear analysis.

Basically, three experimental phases were accomplished during the program. The first of

these involved the fabrication and photoelastic test of a Configuration D double lap joint

having aluminum adherend strips and glass splice plates. This phase is u'scribed in

Section 1 .1. During the second experimental phase, Configuration A and D joints were

tested to deternnine the stress distribution at the surface of its titanium splice plates.

This second phase is described in Section 1.2. Finally, Section 1.3 describes the third

experimental phase in which strain gage results were obtained for several configuration

A and D specimens. ihese results were used to provide an independent check on the

anc lytical and/or photoelastic results.

1.1 PHOTOELASTIC RESULTS - ISOTROPIC ADHEREND

This phase of the investigation was initiated in an attempt to verify an existing closed-

form solution for the stress distribution in a linearly elastic, elastical-y isotropic joint

adhesive. In order to achieve this goal, a photo,4astic model of a double lap joint was

constructed. The adhesive layer was simulated by a thin layer of epoxy photoelastic

material. A reflectivecoating was painted on one side of the specimen, between the

aluminum/epoxy interface, to allow determinatior, of isochromatic lines. Although the

optical sensitivity of glass is ly, relative to that of the adhesive layer, a reflective

coating was painted between the epoxy/glass interface on the other side of the specimen

to determine any contribution to the overall fringe pattern made by the glass. A schematic

of th;s model is shown in Figure 34.
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-. 21575"2.1.-1 Glass I.,Aluminum

Aluminum ,, EpoxyIA
,'" K C.125"

Reflective Paint , (Photoelastic
Coating)

SECTION A-A

FIGURE 34 PBOTOEIASTIC MODEL

The model was constructed to allow determination of the stress distribution (a x, Cy, axy),

in the plane of the adhesive layer. Although the analysis of this configuration is based on

the assumption that these stresses are zero (for relatively "narrow" joints), it was anti.ci-

pated that at least some sort of distribution could be determined photoelostically. No such

distribution could be obtained. Two models of this type were constructed and subjected to

miootonio aily increasn9 sequ.nces of static loads until the glass splice plates failed in

tension (Figure 35).

106



GLASS SPLICE
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FIGURE 35 VIEW SHOWING FAILED GLASS

SPLICE PLATES ON PHOTOELASTIC MODEL

In both cases, the epoxy used to mode! the adhesive layer was of sufficient sensitivity so

that at the recorded failure load leve!, the shear stress, a xz, should have produced at

least one full fringe ;n the central portion of the bonded area. The fact that no

appreciable fringe pattern was observed in this area when the model was viewed normally,

means simply that I 'ae stresses a x, a y, a xy were of much lower magnitudes than was axz

This observation i,, of course, in direct substantiation of the assumption made in ihe

analysis that cx, a y, and axy can ind3ed be neglected.

Although the anticipated measurement of a detailed stress distribution was not accomplished,

the results which were obtained do seem to achieve the desired end goal. They subsiantiate

the validity of the assumption that the adhesive stresses a and ca are neg!igible in com-x xy

parison with a and a .
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1.2 PHOTOSTRESS RESULTS - COMPOSITE ADHEREND

During this phase of the program, an attempt was made to obtain a correlation between

analytical joint-stress predictions and experimentally determined joint-stress. The experi-

mental information was obtained by bonding pads of birefringent material to the splice

plate surfaces of several joint specimens.

.hree such specimens were considered: a 1 .1 "-wide specimen, a 3.0"-wide specimen,

3nd one having a width of 9.0 inches. All three types of specimens had 0°/-5° boron-

epoxy adherend laminates and splice plates made of Ti-6A1-4V annealed material. The

data obtained were reduced, using the shear difference method, to obtain stress and/or

strain components at several desired locations.

1.2.1 i.1"-Wide Specimen

A photograph of this specimen is shown below in Figure 36. The birefringent pads used on

this specimen were cut from a 0.042"-thick sheet of Photostress, Inc., S-16 m-terial.

The titanium splice plate was 0.039" thick and the base adherend was cut from an 8-ply

symmetrical laminate.

Two models of the type shown in Figure 36 were tested. The second of these models was

tested in an attempt to resolve difference between experimental and analytical results

discovered durinig consideration of the first model.

The experimental investigation on the first model was conducted by loading the specimen

to a 1000 lbf load level and using a reflective polariscope to obtain isochormatic and

isoclinic photoelastic data. These data were reduced to obtain the axial stress com-

ponent, a x, plotted in Figure 37. The 1 KIP load applied to the model was nct sufficient
to cause appreciable yielding of any of its constituent materials. The results obtained
were therefore compared with analytical predictions obtained from the linear, closed-form

analysis developed under this program.
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BORON BASE ADHEREND

PHOTOEIASTIC COATING OVER
TI SPLICE PLATE

FIGURE 36 1.1"-WIDE CONFIGURATION "D" SPECIEN WITH
BIREFRINGENT PAD BONDED TO SPLICE PLATE

The analytical results obtained from the closed-form analysis do not cgree with photostress

results within acceptable tolerance (Figure 37). Although the shapes of the "closed-form"

and "photostress" curves are similar, the difference in stress magnitudes is thought to be

too great to ignore. A complementing finite element analysis was done in an attempt to

help resolve this difference. The result of this analysis is also shown in Figure 37. This

latter (finite element) analy'sis tends to lend more credence to the "closed-form"

analytical results than to the experimental results.

The experimental curve in Figure 37 was corrected for tensile reinforcing effect arising

from the fact that the coating material itself carries some load. The derivation of this

correction factor is based on the assumption that the coating is in a constant uniaxial

state of stress. This assumption is obviously incorrect since the splice plate undergoes

bending as well as longitudinal tension. A bendi,,g correction should therefore be applied

tn the photostress results. Since the degree of splice plate bending cannot readily be

assessed, no such bending correction can be made.
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An attempt was made to further resolve the differences between the three curves shown in

Figure 37. This was done by placing strain gages at selected locations along the center-

line of the surface of the splice plate of the second 1 1 "-wide joint. The second joint

specimen was a 16-ply thick laminate. After strain gage results were obtained, the gages

were removed and photostress material bonded to the splice plate surfaces. A photostress

investigation was then performed on the same model. These new strain gage and photo-

stress results were compared not only with each other, but with closed form analytical

results as well. The results of this comparison are presented on Figure 38. It can be seen

that these three types of results correlate much better than comparable results obtained from

the first specimen.

1.2.2 3.0"-Wide Specimen

Figure 39 shows a sketch of the 3.0"-wide specimen discussed in thi; section. The speci-

men was of the 3.0"-wide, Configuration "A" variety. The 0/ 0A450 base adherend

material was fabricated of Narmco 5505 boron/epoxy and w1s an 8 -ply thick symmetrical

laminate. The splice plate was cut from a sheet of Ti-6AI--'V annealed material and had

a 0.0425"-thick birefringent pad bonded to a portion of '" urface as shown in Figure 39.

Photostress data obtained at each of the grid nodes were used to obtain normalized plots

of splice plate surface stress. Figures 40 and 41 show the longitudinal and transverse

stress components, respectively. The longitudinal component displayed in Figure 40 was

evaluated along line ? (Figure 39). The transverse component of Figure 41 was evaluated

along line A-B.

The obvious anticipated symmetry about lines AB and CUD is not particularly evident from

the experimental results presented in Figures 40 and 41. This would seem to indicate that

the data on which these results are based are somewhat questionable. The explanation for

this apparent discrepancy may well be the bending undergone by the splice plate as a

result of the asymmetry of the joint about its midplane. In order to properly interpret the

photostress data, a correction factor must be used to account for the degree of bending

caused by this asyi metry. Such a factor cannot readily be obtained for the situation
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herein discussed and, therefore, no such correction was made to the results presented on

Figures 40 oind 41.

1.2.3 9.'0"-Wide Specimen

Figure 42 shows a sketch of the 9.0"-wide specimen discussed in this section. The speci-

men was of the 9.0"-wide, Configuration "A" variety, having a base adherend fabricated

of Narmco 5505 boron/epoxy. The laminate was of an 8-ply thick, (0°/-5°/0°)2

figuration. Three pods of brefringent material were bonded to the splice plate at the

three locatio•is shown in Figure 42.

Photostress data obtained at each of the grid nodes were used to obtain normalized plots of

splice plate surface stress. Figures 43 and 44 show the longitudinal and transverse stress

components, respectively, evaluated along selected lines on each of the three photostress

pads.

In similarity with results presented previously for the 3.0"-wide specimen, the symmetry

about the specimen centerlines is not particularly evident from the plots of Figures 43 and

44. It is thought significant, however, that the shapes of the curves displayed on Figures

40 and 41 as compared with those displayed on Figures 43 ana 44, respectively, are similar.

1.3 STRAIN GAGE RESULTS

Strain gage results were obtained on all three specimen widths. These results were

obtained by placing strain gages on the surface of the titanium splice plate to obtain data

along tFe some lines at which photostress data were obtained. Each such cluster of gages

was arranged as shown in Figure 45. Gages 1 through 5 were oriented Iongitudinlly and

gages 6 and 7, transversely.

The results obtained from the second 1. 1"-wide configuration "D" specimen are plotted on

Figure 38. These results are compared with corresponding photostress and analytical

results. The maximum joint load of 3000 lbf was chosen to avoid yielding of either splice
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plate or aihesive. Strain readings of all seven gages were recorded at 300 lbf load incre-

met•s up to the maximum (3000 1bf) load level. Strain-lood plots obtained from these

,-P.adings were judged to be sufficiently linear to satisfy the purpose of the investigation.

Gage No. 6 exhibited the most pronounced deviation from linwarity. The strain-load plot

for this gage is shown in Figure 46. Figure 38 shows that the closed form linear analytical

predictions compare favorably with strain gage results along tka longitudinal centerline.

Strain gage results obtained from the 3.0" wide joint specimen are displayed in Figures 47

and 48. Comparable results obtained from the 9.0"-wide specimen are shown in Figures

49 and 50.
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